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Introduction 

What is a system? Wha ? How can these 
notions be given precise g, and how can they be 
related to some of the other basic concepts in system theory? These 
are the central questions to which our introductory chapter is addressed. 

Asystem, according to a dictionary definition, is a collection of objects 
united by some form of interaction or interdependence. In  this sense, 
almost everything is a system of one kind or another. Indeed, in its 
broad interpretation, the notion of a system is one of the most pervasive , 
ideas in the domain of human thought.2 

Not quite so pervasive, but very basic nonetheless, is the notion 
of a state of a system. 
is the information needed to determine the behavior of the system 
from that time on. Thus, in kinematics, the state of a rigid body in 
rectilinear motion is its position and velocity. In  electric circuits, 
the state of a network is a vector whose components are the capacitor 
voltages and inductor currents. In  the case of a thermochemical 
catalytic process, the state may be the concentrations of the reagents, 
their temperatures, and their partial pressures. 

Administration under Grant 
Foundation under Grant GK-2277. 

be found in [1-9] and their references. 

Roughly, a state of a system a t  any given time u' 

1 This research was supported in part by the National Aeronautics and Space 
art by the National Science 

2 Discussions of the concepts of system and state from modern points of view may 
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1.1' System Theory 

In what follows, we shall not attempt to present a survey ores 
critique of the many special ways in which the notions of system and 
state have been defined in various fields of science. Rather, our aim 
is to define these and related notions in a general and mathematically 
precise way, with a view to providing a firm foundation for the con- 
struction of a broad conceptual framework for system theory. Our 
point of departure will be the same as in [1-2], that is, the conception of 
a system as a set of input-output pairs.l However, our approach will be 
simpler and more direct. In order to make our exposition self-con- 
tained, we do not assume that the reader is familiar with the material 
presented in [1-2].2 

As will be seen later, when one starts with the definition of a system 
as a set of input-output pairs, a state of the system can be defined very 
naturally as a tag attached to a subset of input-output pairs satisfying 
certain consistency conditions. Such a subset will be referred to as an 
aggregate. The concept of an aggregate will play an important role in 
our approach and, in particular, will serve to provide a very natural 
way for introducing the basic ideas of state equivalence, system equiTr- 
alence, input-output-state relations, etc. 

Notational preliminaries 

For the convenience of the reader, we list first several commonly 
used abbreviations and conventions which will be employed without 
further explanation in this chapter. 

1. Lowercase boldface letters denote vectors, for example, a, u, x. 
2. Greek and italic letters denote scalar-valued variables, functions, 

3. Braces denote a set or a family, for example, {x} is a set with 

1 The definition of a system as a set of input-output pairs and, more particularly, 
as a relation rather than as a mapping or an operator (see I.$.@, constitutes one 
of the basic differences between the point of view introduced in [ l ]  and the conven- 
tional definitions of a system which one finds in the literature of control theory 
and automata theory. In these theories, a system is usually defined through its 
state equations or as a mapping from the space of inputs to the space of outputs. 

The important work of K. Krohn and J. Rhodes [lo-111 and subsequent con- 
tributions by P. Zeiger [12], R. Kalman [5], M. Arbib [26], T. Windeknecht [9], 
and others have shown that some of the concepts and techniques of abstract algebra 
can be useful in analyzing the behavior of certain types of systems, especially 
finite-state systems and linear discrete-time systems. Even in the case of the very 
general class of systems considered in this chapter, some of the definitions and 
results can be expressed more compactly through the use of algebraic notation and 
terminology. We do not use such notation herein in order not to make familiarity 
with modern algebra a prerequisite for the understanding of our exposition of the 
basic concepts of system theory. 
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The Concepts of System, Aggregate, and State in System Theory 1.1 

generic element x. { x l P )  is a set of x’s having property P ,  for exam- 
ple, {x15 < z < l o}  is the open interval (5,lO). When necessary, 
the notation { f ( t , a )  l a  will be used to place in evidence the variable 
(a in this case) which generates the family. The terms set, collection, 
family ,  and space will be used interchangeably. 

4. The symbol (a$) is used in two different senses: (1 )  As an 
ordered pair of variables a and b, and (2) as the open interval { xla < 
x < 6 } , when a and b take values on the real line (- 00 , w ). In  the 
latter case, the symbol [a$] will be used, as usual, to denote the closed 
interval {x la  5 x 5 b ] .  

5. * stands for equal by dejinition, or denotes. 
6. =+ stands for implies. 

7. * denotes implies and i s  implied by. 
8. \d is an abbreviation for for all; 3 is an abbreviation for there 

exists. 
9. E stands for belongs to or i s  an  element of. stands for does 

not belong to. 
10. Rn denotes the space of ordered n-tuples of real numbers. 

Thus, R1 A (- w,m) and Rn A {(XI, . . . , x n ) J ,  with xi E B’, i = 1, 

Thus, A =+ B means “In order that B 
be true, it  is sufficient that A be true.” 

1 n. . . .  
11. If X = { x )  and Y = {y}, then X X Y A { ( z , y ) } .  

We turn next to notations which are specific to system theory. The 
symbol t will stand, as usual, for time. The range of the variable t 
will be denoted by T ,  with the understanding that unless otherwise 
indicated T is the real line (- , a). In  the case of so-called dis- 
crete-time systems, T will be assumed to be the set of integers . . . , - 1, 
0, 1, 2, . . . . 

A time function v is understood to be a set of pairs { ( t , v ( t ) )  1, t E T ,  
where v ( t )  denotes the value of v at time t. The range of v ( t )  will be 
denoted by R[v( t ) ]  and, unless stated to the contrary, will be assumed 
to be independent of t. Usually, for each t ,  v ( t )  will be an ordered 
n-tuple of real numbers, so that R [ v ( t ) ]  = R”. 

If v is a time function defined over (- 00 , w ) , then the set of pairs 
{ ( t , v ( t ) ) } ,  t E I ,  where I is an interval, is called a segment of v over 
the observation interval I or, for short, a segment. Such a segment 
will be denoted by V I  or, more explicitly, by v[~ , ,~ , I ,  if I = [to,tl]. Cor- 
respondingly, we shall write v(~,,~,] when I is the semiclosed interval 
(to,tl]; and v(ln,tl) when I is the open interval (to$’). When no confusion 
with the time function v can arise, its segment Vr will be abbreviated 
to v. The length of v will be denoted by l ( v )  and will be identified 
with the length of the interval [to,t1]. Thus l ( v )  tl - to. 

6 



1.2. System Theory 

A segment of v which comprises a segment vo followed by a seg- 
ment v1 will be denoted by vovl. v [ ~ , , ~ ~ ~  and 
v' A V ~ ~ , ~ J ,  then vovl A v ~ ~ , , ~ ~ ~ ,  with vo and v1 being segments of vovl. 
(See Fig. 1.1.2.) Note that 

Z(v0v') = Z(V0) + I(+) 

More explicitly, if vo 

In  illustrating various concepts which will be introduced in later 
sections, it will frequently be convenient to deal with time functions 

Fig. 1.1.1 Product notation for contiguous segments of a time function. 

which are sequences of binary symbols, for example, 0, 1 or a, b. 
According to the convention stated earlier, such a time function should 
be written as, say, v = ~(O,a) , ( l ,b) , (2 ,b) , (3 ,u) , (4 ,a) ,  . . .), where the 
first element of each pair indicates the time of occurrence of the second 
element. To reduce the cumbersomeness of this notation, we shall 
write v in the usual form, v = abbaa 9 - . , indicating separately, if 
needed, the time of occurrence of the first symbol. 

This completes the notational preliminaries. We are now ready to 
turn to defining some of the basic concepts of system theory. 

A word of warning: On first exposure, an uninitiated reader may find 
the definitions formulated in the following sections to be somewhat 
artificial and bearing little resemblance to his prior notions of the 
meaning of such terms as system, state, etc. In  time, however, he will 
come to realize that these abstract-sounding definitions are entirely 
natural and that they merely serve to give precise meaning, couched 
in mathematical notation and terminology, to various ill-defined notions 
which occur in the traditional approaches to system analysis. 

2 DeJinition of an abstract object 

As a preliminary to defining a system, we shall introduce a closely 
related notion-the notion of an abstract object. 

6 



The Concepts of System, Aggregate, and State in System Theory 1.2 

In  order to avoid stating various definitions both for the case where 
t is continuous (that is, its range is an interval) and for the case where 
tis discrete ( t  = . . . , -1,0,1,2, . . .), weshall restrict our attention to 
the former case and assume that T, the range oft, is the real line. With 
minor modifications, the same definitions will usually apply when t is 
discrete or, more generally, when t ranges over a subset of the real line. 

With this understanding, consider a physical object 6 which is 
associated with a set of measurable attributes, say, mass, height, width, 
color, velocity, etc. Let the values of these attributes a t  time t be 
denoted by vl( t ) ,  . . . , v,(t). Clearly, from the mathematical point 
of view, what matters about 6 is not the physical identity of the time 
functions vl ,  . . . , v, but the mathematical relations between them. 
I n  essence, it is these relations, stripped of their physical identity, 
.that constitute an abstract object. 

To transform this rather vague idea into a precisely defined concept, 
it will be helpful to first focus our attention on a consistency condition 
which will play an important role in subsequent definitions. The 
significance of t,his condition will become clearer later, after the noticn 
of an abstract object is related to that of its state. 

Closure under segmentation 

For each to and tl in (- 00, m ) ,  with tl 2 t o ,  let B A { v [ ~ , , ~ J ]  denote 
a family of segments, with the understanding that to each interval 
[to,tl] may correspond more than one segment v[~ , ,~ , I .  

Let 7 E [to,tl] and let the segments V [ ~ , , ~ J ,  V [ ~ , , ~ I ,  and v[,,~,] be denoted 
by v, vo, and v', respectively. Then, in accordance with the notation 
for contiguous segments, we can write v = vovl. 

The family of segments V = {vovl] will be said to be closed under 
segmentation or, for short, satisfy the CUS condition if and only if for 
each T in [to,tl] both vo and v1 belong to V .  In  symbols, the CUS 
condition may be expressed as 

for all to, tl in (- a, a), all v in 8, and all T in [to,tl]. Equivalently, 
the family V is closed under segmentation if and only if every segment 
of a segment which is a member of V is also a member of V.  

Note that from vo E V and v' E V it does not necessarily follow 
that vov' E V .  If vo E V and vovl E V ,  then v' will be said to be a 
continuation of vo in V .  
Example As a simple illustration, let v[t,,tl~ be defined by the equation 2 

v( t )  = a + /3(t - to) t o  I t I tl  
7 



1.2 System Theory 

where to, tl, a, and p range over (- a, a). 
is satisfied in this case. 

CIearly, the CUS condition 
On the other hand, if v(t) were defined by 

v( t )  = 1 + P(t  - t o )  

then the CUS condition would not be satisfied. 
The CUS condition can readily be extended to the case where v is 

an ordered n-tuple of segments (defined on the same interval) and V is a 
family of such n-tuples. For example, if vis an ordered pair, v = (u,y), 
where u A u[ta,tll and y A y[to,ll], then the CUS condition 1 becomes 

S (uoul,yoyl) E V (uo,yo) E V and (ul,yl) E V 

where uo 4 u [ ~ , , ~ ~ ,  u1 yo y[to,r~, and y' A As before, 
a pair (u1,y') will be said to be a continuation of (u0,yo) in V if (uOul,yOyl) 
E V .  

Abstract objects 

Earlier in this section, an abstract object was vaguely identified with a 
set of relations among the time functions which represent its attributes. 
Having formulated the CUS condition, we are now in a position to 
define the concept of an abstract object in concrete and yet very general 
terms. 

Debition An abstract object a is a family of ordered pairs of time 
functions 

4 

a = I ( ~ r f a , t l l , Y r t o . t l l )  1 t o ,  t l  E (- co 9 03 1 
satisfying the CUS condition, that is, ( ~ ~ t ~ , ~ ~ l , y [ ~ ~ , ~ ~ l )  belongs to a =+ every 
segment of ( ~ ~ ~ , . ~ , ] , y ~ t , , ~ , ~ )  belongs to a. 

The segments u A ~ [ ~ ~ , ~ ~ l  and y 4 y[to,tl~ are termed, respectively, 
input and output of a, and the pair (u,y) is said to be an input-output 
pair belonging to a. is a collec- 
tion of input-output pairs, 

Thus, in essence, an abstract object 

5 Q. = {(U,Y)I 

satisfying the CUS condition. 
The families of time functions 

6 

7 
and 

constitute, respectively, the domain and range of a. These families 
represent, respectively, the sets of all input and outputs that can be 
associated with a. For a diagrammatic representation of an abstract 
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The Concepts of System, Aggregate, and State in System Theory 1.2 

object a with input u and output y, we shall employ the conventional 
block diagram form shown in Fig. 1.2.1. 
Comment The above definition of an abstract object is merely a 
formal expression of the fact that any interaction with a physical 
object involves varying some of the attributes of this object and 
observing the resulting variations in other attributes. The attributes 
that are varied play the role of inputs (causes) and the resulting 
variations are the outputs (effects). In taking the point of view that 
an abstract object is a collection of its input-output pairs, we are in 
effect asserting that so long as our interaction with an object takes 

8 

Input output 

Fig. 1.2.1 Diagrammatic representation of a system a with input u and output y. 

place through the observation of the variations in its attributes, it 
is logical to identify the object in question with the totality of possible 
observations of variations in its attributes. The totality of such obser- 
vations, then, constitutes an abstract object. 

It is important to observe that the definition of an abstract object, 
does not imply that to each input u corresponds a unique output J .  On 
the contrary, to each input u will correspond in general a number of 
possible outputs, each of which constitutes a possible response of a t o  
u. As will be seen later, the nonuniqueness of response to  a given input 
reflects the dependence of the output not only on the input but also on 
the initial state of the object. In  mathematical terminology, because 
of the nonuniqueness of the dependence of output on input, an abstract 
object is a relation rather than a function or an operator. 
Example To illustrate the notion of an abstract object at this point, 
we shall consider just one simple example involving input-output 
pairs which are sequences of binary symbols. To distinguish between 
input and output symbols, the former are denoted by 0, 1 and the 
latter by a, b. 

The input-output pairs of lengths 1, 2, and 3 for this object, call it a, 
are listed below, with the understanding that any sequence of Os and 1s 
can be an input sequence. 

9 

Input-output pairs of length 1: 

@,a) (La> (1,b) 
9 



1.2 System Theory 

Input-output pairs of length 2: 

(00,ab) (O0,ba) (O1,ba) (O1,ab) 
(10,aa) (10,bu) (?l,ab) (11,ba) (11,bb) 

Input-output pairs of length 3: 

(000,aba) (010,baa) (100,bab) (ll1,aba) (000,bab) (001,bab) 
(ll1,bba) (110,bba) (111,bba) (001,aba) (110,boa) (Ol1,abb) 
(100,aab) (101,aab) (010,aba) (101,bab) (110,aba) (Ol1,bab) 

We could expand this list indefinitely by listing input-output pairs of 
lengths 4, 5, etc. In  this particular case, however, it is easy to show 
that the input-output pairs of length 3 determine all input-output 
pairs of longer length. An abstract object with this property (i.e., one 
in which input-output pairs of finite length k determine all inputoutput 
pairs of longer length) will be said to have Jinite memory. More con- 
cretely, a finite memory object will be said to have memory of length k 
if given any input-output pair (u~o,tl l ,y~o,tl l)  of length IC (i.e., one in 
which tl  - to = k) and given any continuation ~ h ~ , ~ ~ ~  of u ~ ~ , ~ , ~  in a(@) 
[i.e., an input u1 such that uou' E a(@)], there is just one continuation 
yl of yo in R(a). In other words, if (uoul,yOyl) E @ and (uo,yo) is of 
length k, then y1 is uniquely determined by uo, yo and u'. Thus for a 
finite-memory system y' can be expressed as a function of uo, yo and u1 

y1 = f(uO,yO,u') 

and, more particularly, for t = . . . , -1, 0, 1, 2, . . . , u1 = (t,ut) 
and y' = (t,yt), we can write 

yt = f(Ut--k, * ,Ut.-l,Yt---k, . . ,yt-x,ut,t) 

where ut and yt denote the values of u and y at  time t. 
To show that the abstract object under consideration has finite 

memory, it is sufficient to invoke the CUS condition. Specifically, 
consider an input-output pair of length 3 such as (010,aba). From 
this sequence, we can deduce an input-output pair of length 4 of the 
form (O1Oul,abayl) as follows. For the input sequence 0100, the output 
sequence can be either abaa or abab. Now, by the CUS condition, the 
last three symbols in this pair must be an input-output pair. In  the 
list of input-output pairs, we find (100,bab) but not (100,baa). Con- 
sequently, (0100,abab) belongs to @, while (0100,abaa) does not. In  a 
similar way, all input-output pairs of length greater than 3 can be 
deduced from pairs of length 3. 

In  the foregoing, we have indicated how the CUS condition can be 
employed to deduce input-output pairs of length > 3  from those of 

10 
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length 3. Clearly, all pairs of shorter length can also be deduced from 
those of length 3 by a trivial application of the CUS condition. It is 
easy to verify that all input-output pairs of length 1 and 2 in the given 
list are segments of input-output pairs of length 3. 

Input-output relations 

In general, it is not practicable to list all input-output pairs which 
define an abstract object since such pairs are usually not finite in 
number. For this reason, it is customary to characterize a by an 
input-output relation, that is, by an equation or an algorithm which 
can be used to generate all input-output pairs belonging to a. 

The most common example of an input-output relation is a differen- 
tial equation. Thus, when we say that a is characterized by the 
input-output relation 

which is a linear differential equation in u and y ,  we mean that any 
ordered pair (u,y) which satisfies 10 is an input-output pair for a, and 
conversely any (u ,y )  E 

To illustrate, suppose that the input-output relation for a is expressed 
by 

satisfies IO.? 

a + y = u  dY 

The general solution of this equation yields an explicit expression for all 
input-output pairs which satisfy 11. Specifically, such input-output 
pairs can be expressed as (u( t ) ,y ( t ) ) ,  t 2 to, in which y ( t )  is related 
to u by 

y ( t )  = ae-@-to) + e-+E)u([) d [  16 L: 
where LY can be any real number. [Note that from setting t = t o  in 12 
it follows that a = y(tJ.1 In this representation, to each value of LY 

(which will subsequently be called a state of a) corresponds a set of 
input-output pairs defined by 12. We will make use of this observation 
in our later discussion of the notions of aggregate and state. 

Another common example of an input-output relation is a difference 
equation relating input and output sequences. For example, the 
difference equation 

13 y1+1 - cyt = Ut t = . . . , -1, 0, 1, . . . 
t Although we have not stated so explicitly, it is understood that u(t) and y ( t )  

range over R1 and that u and y are time functions on which the operations involved 
in 10 can be performed. 

11 



I .2 System Theory 

is an input-output relation in the sense that it defines all input-output 
pairs belonging to an object a. More explicitly, such input-output 
pairs are expressed by (ut,yt), t 2 to, where yt is related to u by the 
solution of IS, namely 

in which a! [= y( to)]  ranges over R'. As in 11, to each value of a 
(which will subsequently be called a state of a) corresponds a set of 
input-output pairs of a defined by 14. 

Still another way of defining sets of input-output sequences is 
provided by graphs such as shown in Fig. 1.2.2. In  this case, ut and yt 

Fig. 1.2.2 State diagram for a finite-state system. 

range over finite sets which for simplicity are taken to be ( 0 , 1 }  and 
(a$ } ,  respectively, and each transition from one node (represented by 
a circle) to another is associated with an input-output pair of length 1. 
For example, starting in node I and applying the input sequence 01101, 
one gets the output sequence babab. This generates the input-output 
pair (01101,bubab). All other input-output pairs which belong to the 
object in question can be generated in a similar fashion. 

Objects whose input-output relations can be characterized in this 
fashion are called jinite-state systems. A graph such as shown in 
Fig. 1 .d.2 is called a state diagram and, as will be seen later, the nodes 
of such a graph play the role of the states of the object which it defines. 

It should be noted that most of the abstract objects which we used 
for illustrative purposes in this section fall into the category of time- 
invariant linear systems. Since the notions of time invariance and 
linearity play important roles in system theory, it will be helpful a t  
this juncture to relate these notions to  the conception of an abstract 

I2 



The Concepts of System, Aggregate, and State in System Theory 1.2 

object as a collection of input-output pairs. However, since we are not 
concerned in this chapter with the properties of any particular class of 
systems, our discussion of time invariance and linearity will be very 
brief and limited essentially to definitions of these terms. More 
detailed discussions of the implications of time invariance and linearity 
may be found in [l] and other texts and papers dealing with linear 
and nonlinear system theory [13-261. 

Time invariance 

As a preliminary to defining time invariance, it is convenient to intro- 
duce a notation for translates of a segment. Specifically, let v = v[fo,tll 

I I I I 
I I I 

*O f l  to+& t l+6  Time 

Fig. 1.2.3 Translate of a segment. 

be a segment. 
v6 such that (see Fig. 1 .W.S) 

Then, by a translate of v by amount 6 is meant a segment! 

15 va(t) v(t - 6) t o  + 6 5 t I tl + 6 
Roughly speaking, time invariance of an abstract object has to do 

with invariance of its input-output pairs under translations in time. 
More specifically, let (u,y) be an input-output pair for an abstract 
object Q. and let (ua,ya) denote a translate of (u,y) by amount 6. Then 
R is a time-invariant abstract object if and only if the following holds 
true 

16 (u,y) E a rj (ua,ya) E Q. 

In  other words, Q. is time-invariant if and only if the set = { (u,y)) 
is closed under all translations in time. 

It is easy to verify that the abstract objects defined by the input- 
output relations 11 and 1.3 are time-invariant. More generally, 
any input-output relation which has the form of a differential or 
difference equation with constant coefficients defines a time-invariant 
abstract object. It should be noted that the abstract object of Exam- 
ple 9 is tacitly assumed to be time-invariant because the times of 
occurrence of the first symbols in each input-output pair are not 
specified. This implies that not only the input-output pairs in Example 
9 but also all their translates belong to the object under consideration. 

IS 

for all real 6 



I .3 System Theory 

Linearity 

The importance of the notion of linearity stems from two facts: (1) 
Linearity, when it is present, greatly simplifies the analysis of system 
behavior; (2) many systems encountered in the real world are linear, 
a t  least to a first approximation. 

Linearity can be defined quite simply in terms of the collection of 
input-output pairs which characterize an abstract object. Specifically, 
let Q. = { (u,y) 1, and let (uP,yo) and (ul,yl) be any pair of input-output 
pairs in a. I n  terms of these input-output pairs, the definition of 
linearity can be worded as follows. 

i7 Definition An abstract object a is linear if and only if 

18 (uo,yo) E Q. and 

for all real ko and kl. is linear if and only if any 
linear combination of any two input-output pairs in a is also an input- 
output pair in a. Equivalently, Q is linear if and only if Q. is a linear 
vector space. 

Clearly, the input-output relations 11 and 13 define abstract objects 
which are linear in the sense defined above. Thus, in the case of li, 
we can write 

(ul,yl) E a * (kouo + klul, koyo + klyl) E a 
I n  other words, 

19 

20 

!!e + yo = uo 

dyl + y' u1 

dt 

dt 

and on forming a linear combination of 19 and 20, we have 

d 
dt - (kogO + k1y') + koyO + k1y' = kouO + IClU' 21 

which satisfies 18 provided the domain and range of a are linear 
vector spaces, as they are tacitly assumed to be. The same applies to 
13. 

Some basic notions stemming f rom the concept of a n  abstract 
object 

This section is devoted to the discussion of several basic notions which 
stem from the concept of an abstract object as a collection of input- 
output pairs. 

14 

The first of these notions is that of 



The Concepts of System, Aggregate, and State in System Theory 1.3 

1 Containment An object a will be said to be contained in object a, 
written as Q. C a, if the set Q. is a subset of a. In  terms of input- 
output pairs, this means that every input-output pair belonging to @. 
also belongs to 63. 

d Example Consider two objects and 63 which are characterized by 
the state diagrams shown in Fig. 1.3.1. It is easy to verify by inspec- 
tion that every input-output pair which belongs to a also belongs to 63. 

a 63 

Fig. 1.3.1 State diagrams for a and 63, with a C 63. 

The converse, however, is not true, e.g., the input-output pair (01,ba) 
belongs to but not to a. 

3 Example Suppose that and 63 are characterized, respectively, by 
the input-output relations 

4 a:  

5 a: 

In  this case, the input-output pairs for a and 63 may be expressed 
in the explicit form 

6 a:  (u(t), a! + 1." u(t )  d t )  t 2 to 

7 a: ( U N ,  P o  + Pl(t - to) + 1: u(t> d t )  t 2 to 

where a, Po, and 01 range over R'. 
belonging to also belongs to a. Hence, a C 63. 

the concept of equivalence.' 

alence in 111. 
alence in this chapter. 

Clearly, every input-output pair 

The notion of containment leads to a very basic concept, namely, 

The concept of equivalence as defined here corresponds to  that of weak equiv- 
What is referred to therein as equivalence will be called strong equiv- 
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8 Definition a and @ are equivalent, written as a = 63, if a and @ are 
equal as sets, that is, if C @ and @ C a: In  words, this means 
that a and @ are equivalent if every input-output pair which belongs 
to  a also belongs to  63 and vice versa. 

9 Example Let a be characterized by the system of differential equations 

10 a:  
- = v  dY 
dt 
dv 
dt - u  - _  

and let (8 be characterized by the differential equation 

11 63: - _  d2Y - 
dt2 

It is easy to verify that the input-output pairs for a and @ are 
expressed, respectively, by 

1.2 

13 

where a. and a1 range over R', and 

t 2 t o  

where Po and PI range over R'. Clearly, every input-output pair 
which belongs to Hence, 8 = a. 

14 Example Let and (8 be the objects characterized by the state 
diagrams shown in Fig. 1.3.1. It is easy to  verify that every input- 
output pair which belongs to 6 also belongs to @ and vice versa. 
Hence, a = (8. 

also belongs to  @ and vice versa. 

a CB 

Fig. 1.3.2 Example of equivalent systems. 
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Equivalence and indistinguishability 
Consider the following identification problem. Suppose that an experi- 
menter is given a black box which is known to contain either a or a, 
with the input-output relations of Q. and (B known to the experimenter. 
The experimenter is free to apply to the black box any input u which is 
admissible for both a and (B (i.e., a u such that u E a(@) A a(@) 
and observe the response y. Then, based on the knowledge of the 
input-output pair (u,y), the experimenter is supposed to decide whether 
the black box contains Q. or (B. If the experimenter can not determine 
this from (u,y), no matter what u is chosen and what y is observed, then 
a and (B are said to be indistinguishable under a single experiment. 

From the definition of equivalence, it follows at  once that equiv- 
alence implies and is implied by indistinguishability under a single 
experiment. However, it is possible that two objects are indistinguish- 
able under a single experiment and yet are distinguishable under a 
multiple experiment, that is, an experiment in which the experimenter 
has a t  his disposal more than one copy of the black box. For example, 
the objects shown in Fig. 1.3.2 are equivalent and yet they are dis- 
tinguishable under a multiple experiment in the sense that if the 
experimenter has two identical copies of the black box containing, say, 
(B, then starting in node 3' one copy would produce b in response to 0 
while the other copy would produce b in response to 1. These responses 
could not be obtained if the same inputs were applied to two identical 
copies of a. This implies that a and (B are distinguishable by the 
multiple experiment in question even though they are indistinguishable 
under a single experiment. 

As will be seen later, indistinguishability under a multiple experiment 
corresponds to what will be called strong equivalence, denoted by 
E (B. Strong equivalence implies equivalence, but not vice versa. 

4 The notion of a system 

So far, our discussion has been concerned with a single abstract object 
@. associated with input u and output y. To be more general, we have 
to consider collections of abstract objects all . . . , @N in which 
some of the inputs or outputs associated with, say, ai, may be con- 
strained to be equal (for all t )  to some of the inputs or outputs of 
other objects in the collection. Such a combination of abstract 
objects will be called a system. It should be noted that, under this 
definition, every abstract object is a system and every system is an 
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abstract object. For this reason, we shall henceforth use the term 
system to describe both an abstract object and a collection of abstract 
objects. 

A simple example of a combination of abstract objects which form 
a system is shown in Fig. l,.&.l. Here, the system a (represented by 

Q. 
1 r---------------- 

I I 

I -  @ I  - 0 ’  a2 - -  [ =  

I I 
I I 

y’ u2 y 2 :  Y 

Fig. 1.4.1 Tandem combination of and at. 

dotted block) with input u and output y comprises two objects, a, and 
a,, connected as shown in the diagram. This connection represents the 
following constraint between the inputs and outputs of a1 and 8,: 
y’ = u2, with the input and output of a related to those of and a2 
by u = u1 and y = y2. 

A question which naturally arises when one deals with a combination 
of two or more systems is the following: Suppose that a system is 
specified as a given combination of N component systems, al, . . . , 
Q.N, each of which is defined as a specified set of input-output pairs. 
How can one deduce from the knowledge of these sets of input-output 
pairs and the way in which the components of Q. (that is, El, . . . , a,) 
are combined the set of input-output pairs which constitutes a? This 
question presents one of the central problems of system theory. We 
shall refer to it as the problem of input-output analysis. 

There are two basic ways in which the problem of input-output 
analysis can be formulated. Essentially, the difference between these 
formulations lies in the way in which the sets of input-output pairs 
constituting the components of the given system are defined. Specifi- 
cally, in the explicit form, these sets are defined by their respective 
characteristic functions, i.e., by functions which assign the value 1 
to each input-output pair which belongs to a particular component 
system and 0 to those that do not. More concretely, if a generic 
input-output pair associated with a component system ai, i = 1, . . . , 
N ,  is denoted by (ui,yi), then ai is defined explicitly by the characteristic 
function pi(ui,yi) : 

1 pi(ui,yi) = 1 for (ufy? E ai 
= 0 for all ordered pairs of time functions which do not 

belong to ai 
i8 
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Thus, the knowledge of the characteristic function of a, is equivalent 
to having a listing or explicit characterization of all input-output pairs 
which belong to Qi. 

In  the implicit form, the component systems are defined by their 
respective input-output relations rather than by characteristic func- 
tions. In this case, in order to determine the input-output pairs belong- 
ing to, say, &, it is necessary to "solve" the input-output relation 
defining ai. The problem of input-output analysis is labeled implicit 
in this case because the characterization of ai by an input-output rela- 
tion is implicit rather than explicit in nature. 

It will be helpful a t  this juncture to summarize the two formulations 
of the problem of input-output analysis in parallel terms. 

Problem of input-output analysis in explicit form Given a system @, 
as a specified combination of component systems @I, . . . , &N,  with 
each ai, i = 1, . . . , N ,  defined by a characteristic function pi(ufpi). 
Determine the characteristic function of Q. from (1) the knowledge 
of the characteristic functions of &I, . . . . , @ N ,  and (2) the con- 
straints on the inputs and outputs of a', . . . , C ~ N  imposed by the 
way in which they are combined. 

Problem of input-output analysis in implicit form Given a system @, 
as a specified combination of component systems ax, . . . , a,, with 
each ai, i = 1, . . . , N ,  defined by an input-output relation (e.g., 
a differential equation). Determine the corresponding input-output 
relation for 8 from (1) the knowledge of the input-output relations 
for all . . . , a ~ ,  and (2) the constraints on the inputs and outputs 
of a', . . . , a~ imposed by the way in which they are combined. 

As we shall see presently, on a purely formal-but not necessarily 
computational-level, problem 2 is much easier to solve than problem 3. 
On an analytical level, problem 3 can be solved completely only for 
certain types of systems, e.g., systems defined by differential equations 
with constant coefficients. 

To illustrate this point, consider a tandem combination @ of two 
systems a1 and a2 (Fig. 1.4.l), in which a1 and are defined by their 
respective characteristic functions 

2 

3 

4 

5 

pl(ul,yl) = 1 
= 0 

pz(u2,y2) = 1 
= 0 

if (u',yl) E a1 
if (u',y') g: (31 
if (u2,y2) E a2 
if (u2,y2) 4 a2 

Here the interconnection constraint is expressed by u2 = y', with the 
input and output of Q. identified with u1 and y2, respectively. 

The constraint u2 = y' implies that (u1,y2) is an input-output pair 
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for a if and only if there exists a time function y' such that (ul,yl) 
and (yl,yz) are input-output pairs for a1 and a2, respectively. To 
express this in a more compact form, we note that the statement 
"(ul,yl) E a1 and (y1,y2) E &" is expressible as the equation' 

6 min [~c~(~~,Y~>,~c.z(Y',Y~)~ = 1 
where rnin [a,b] denotes the smaller of the two numbers a, 6,  with the 
understanding that rnin [a,a] = a. Furthermore, the statement 
"There exists y1 such that (ul,yl) E a1 and (y1,y2) E az" can be 
expressed as 

7 max rnin [c(l(u',yl>,~~(y',yz)>I = 1 

This implies that the characteristic function of a can be expressed in 
terms of those of a1 and az as follows 

Y l  

8 CL(U',YZ) = Inax min I~1(U',Y1>,rC2(Y1,~z)l 
2/' 

The above relation defines the set of input-output pairs of the tandem 
combination of Q.1 and a2 in terms of the sets of input-output pairs 
of Thus, in principle, 8 provides a solution to the problem 
of input-output analysis for the case where a1 and a2 are connected 
in tandem and the sets of input-output pairs for 81, az, and a are de- 
scribed by their respective characteristic functions. 

The same approach to the problem of input-output analysis can be 
used in the more general case where a system a is an arbitrary combi- 
nation of a finite number of objects (21, . . . , a N .  To illustrate, 
consider the system shown in Fig. 1.4.2, which is composed of three 
interconnected objects @,I, a2, and ea. In  this case, the input u 
and output y of a are identified with u21 and y3, respectively, and 
the interconnection constraints read 

and az. 

y ~ '  = u12 y21 = u13 y13 = uz2 y12 = ull yz2 = uz3 

Now let @I, a2, and a3 be defined, respectively, by their charac- 
teristic functions p1(~1~,~2';y1',y2~), p~(u12,uzz;y12,y~2) ,  cc3(~1~,uz~;y1~).~ 

1 Alternatively and more simply, we could write p1(u1,g1)p2(y1,y2) = 1. We use 
rnin rather than the product because the former has wider generality (e.g., is appli- 
cable when, as in the case of fuzzy systems (see [24]), the characteristic functions 
take values in the interval [O, l ] ) .  Note that for binary variables rnin [a,b] = ab 
and max [a,b] = a + b - ab, where + denotes sum. More generally, one can 
employ the notation rnin [a,b] = a A b and max [a$] = a V b to simplify the writ- 
ing of equations such as 8 and 9. 

2 When a system has multiple inputs and/or outputs, it is helpful to use a semi- 
colon in the characteristic function to separate the input variables from the output 
variables. 
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Then, by inspection, the characteristic function for a can be expressed 
in terms of p ] ,  p z ,  and p 3  as follows: 

9 IZ(~Z ' ,YI~)  
- - max min [ p ~ ( y ~ 2 , u ~ ' ; y ~ ' , y ~ 1 ) , ~ ~ ~ ~ ~ 1 , y ~ 3 ; ~ ~ 2 , ~ ~ z ~ , ~ ~ ~ ~ ~ 1 , y ~ 2 ; y ~ 3 ~ l  

As was pointed out earlier, this equation is merely a compact expression 
for the statement "An input-output pair (uZ',y~~) belongs to a if 
and only if there exist yl', yz', yx2, and yz2 such that ( y ~ ~ , u z ~ ; y ~ l , y z ~ ) ,  
(y11,y13;y12,y2z), and ( ~ ~ ' , y z ~ ; y 1 ~ )  are input-output pairs for a,, az, and 
a3, respectively. " 

Yl', Y21, Y12, 2/22 

Fig. 1.4.2 
systems 6 ,  6 2 ,  and 63. 

Example of a system which is a combination of three component 

In  the foregoing examples, we assumed that the objects comprising 
a system are defined by their respective characteristic functions and 
that the problem is to express the characteristic function of the 
system in terms of the characteristic functions of its components. The 
examples show that, in general, the problem of input-output analysis in 
explicit form is easy to solve, a t  least on a purely formal level. 

Next, let us turn our attention to the case where a system is com- 
posed of objects which are defined by their respective input-output 
relations and the problem is to find an expression for the input-output 
relation for the system in terms of those of its components. For 
concreteness, assume that al and Qz are connected in tandem as in 
Fig. 1.4.1 and that their respective input-output relations read 

10 a1: ( P 2  + 3P + 2)Y' = u1 
11 a2: (P + 3)y2 = pu2 

where p denotes the derivative operator d/dt .  
the input-output relation for 

Then, as is shown in 111, 
is given by 

(P + 3 ) ( P 2  + 3P + 2)y2 = pu' 

I 1  
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1.2 
13 

14 

16 
16 

17 

More generally, if the input-output relations for a1 and az are of the 
form 

a, : L i ( p ) ~ '  = Mi(p)u' 
a2 : Lz(P)Y2 = Mz(p)u2 
where L1, M1,  Lz, and M z  are differential operators such that L1 and M Z  
have no factors in common, then it can be proved [l] that the input- 
output relation for @ is given by 

L1 ( P W 2  (PI Y2 = M1 (P> Mz (PI u1 

As will be shown in Chap. 5, the problem of input-output analysis 
in implicit form can be solved completely when all . . . , aN are 
systems whose input-output relations are linear differential equations 
with constant coefficients. Unfortunately, this is just about the only 
case in which the problem of input-output analysis in implicit form can 
be solved analytically. In  particular, no analytic procedure is avail- 
able for the solution of this problem when the input-output relations 
of all . . . , ( 3 ~  are linear differential equations with time-varying 
coefficients. For example, in the case of the tandem combination of 
Fig. 1.41, suppose that a1 and az are characterized by input-output 
relations of the form 

a1: [a,'(t)p" + * . + ao'(t)]g' = [b , l ( t )pn  + * + bol(t)lul 
+ b0"t>lU2 az: 

where the ail(t>, a?(t), bil(t), biz@),  i = 1, . . . , n, are specified time- 
varying coefficients. In  this case, there is no general analytic procedure 
for expressing the input-output relation for a in the form of a differential 
equation 

[a,"t)p" + * * * + ~ O ~ ( ~ ) I Y ~  = [bn2(t)pn + * 

L(P,t)Y2 = M(p1t)u' 
where L(p,t)  and M(p, t )  are polynomials in p with time-varying 
coefficients. 

This concludes our brief discussion of the notion of a system and 
the problem of input-output analysis. We are now ready to proceed to 
the definition of the notions of aggregate and state. 

Aggregates and states 

Although the notion of state has a long history of use in many fields 
of science, especially in analytic dynamics, thermodynamics, and 
quantum mechanics, it is hard to find a definition of it in the scientific 
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1 

literature which does not suffer either from narrawness or imprecision. 
In  what follows, we shall show how the concept of state can be given 
a precise and yet very general meaning by interpreting it as a tag 
attached to a subset of input-output pairs in &. The reader must be 
warned, however, that the naturalness of this point of view will not be 
apparent in the initial stages of our discussion. 

Let be a system defined as a set of input-output pairs 

(3 = { (U,Y>I  

satisfying the CUS condition (see Sec. 2 ) .  For each to, let @(to) denote 
the subset of & comprising all input-output pairs which start a t  to, 
that is, 

&(to) = {(Ulla,ll,YIto,tl) 1 t 2 to 
It would be natural to attempt to group together those input-output 

pairs in &(to) which exhibit a particular characteristic or have some 
specified property in common. With this in view, let &,,(to) denote a 
specified subset of input-output pairs in &(to), with the index (YO serving 
as an identifying label. For suggestiveness, such a subset will be 
referred to as a bundle of input-output pairs or, simply, a bundle, and 
a. will be called its tag. 

To illustrate, consider a system & defined by the input-output 
relation 

By solving this equation for y, we can express &(to) explicitly as 

where 
&(to> = Iaa,(to) IP, a 0  E (- O' 1 

2 &,,(to) = { u ( t ) ,  aoe-(t--tO) + I;: e-(t-f)u(t) at, t 2. to}U 

and u ( t )  E (- CQ, w ). In  this case, for each ao, 2 defines a bundle of 
input-output pairs in &(to), with u being the generahg variable. 

As in the above example, usually our concern will be not with a 
single bundle &,,(to), but with a family of bundles, {&,,(to)), for each 
to. Such a family would be generated by permitting eo to vary over 
some space Zt,. The subscript to in 2,, serves to anticipate the possibil- 
ity that the range of a. may be dependent on to. When Z,, is independ- 
ent of to, it will be denoted by Z.' 

1 In terms of the notation described in Notational Preliminaries (Sec. I ) ,  (@,,(to) } 
should be interpreted as ( r%an(t~)}a, ,  that is, a family of bundles of input-output 
pairs starting a t  to, with a0 being the generating variable. When both to  and a0 
are varied, the resulting family of bundles will be denoted by ( @ a , ( t o ) } a ~ , t , .  A 
bundle in this family which comprises input-output pairs starting at, say, tl, will 
be denoted by aa1(t1), where a1 is a tag for the bundle in question and a1 E Ztl. 
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To recapitulate, for each to in (- Q) , Q) ) we assume that in some as yet 
unspecified way the input-output pairs in &( to )  are grouped (bundled) 
together on the basis of some property which they have in common. A 
generic bundle is denoted by @,ao( tO) ,  with its identifying tag a0 being 
an element of a specified space Et,. For each to, varying a. over Zt, 
generates a family of bundles which we denote by (@,,,(to)}. The 
members of this family are subsets of input-output pairs in @(to). 
These subsets need not be disjoint. 

So far we have not made any restrictive assumptions regarding the 
ways in which the input-output pairs in a(to) may be grouped together 
into bundles. Now, to pave the way for the introduction of the notion 
of state, we shall focus our attention on a special way of bundling the 
input-output pairs in @,(to). The resulting bundles will be referred 
to as aggregates of input-output pairs or, simply, aggregates, and their 
tags will constitute the states of a. As will become more apparent 
later, the concept of an aggregate is intrinsically more basic than that 
of state, mainly because a state is merely a tag for an aggregate and 
as such is less intrinsic in relation to a. 

In order to qualify to be called aggregates, the bundles in the family 
{ @,,(to) }, a .  E Z,,, must satisfy four consistency conditions which are 
set forth below. The motivation for these conditions will become clear 
once we have defined the notion of state. 

Covering This condition requires that, for each to, the family of 
bundles {@.,~(to)],o,t, be a covering for @(to) in the sense that the 
subset of input-output pairs starting at to, @(to), be the union of the 
bundles {@,,,(to) 1, a.  E Z,,, that is, 

3 

6 

The purpose of this condition is to insure that every input-output pair in 
@(to) belongs to a t  least one bundle in the family {@,,,(to)), a.  € Zr,. 

5 Closure under truncation Let (uoul,yOyl) be an arbitrary input-output 
pair in @(to), with (uo,yo) representing a left truncate of (u0u1,yoy1).t 
Then, the condition in question requires that if (uOul,yOyl) is in a bundle 
@,,,(to), so must be every left truncate of this pair. In  symbols 

6 (UOU~,YOY') E @,,,(to) * (u0,y0) E a a o ( t 3  
for all (uoul,yoyl) E @,,,(to), ail to, and all a. E &,. 

t In accordance with the notation introduced in Sec. 1, (uOu1,yOy1) is an input- 
output pair comprising an input-output pair (u0,yO) followed by an input-output 
pair (u1,yl). The input-output pairs (u0,yO) and (u1,yl) are, respectively, left and 
right truncates of the input-output pair (u"u1,y$1). 
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7 Uniqueness By analogy with the domain and range of a system (see 
Sec. 2 ) ,  we can define the domain and range of a bundle of input-output 
pairs @,,(to) as the sets 

8 BD!@,,(to)) A {Ul(U,Y> E @,,(tO)t 

9 @(@,,(to>) IYl(U1Y) E @,,(to>) 
and 

The uniqueness condition requires that to each input u in B(@,o(to)) 
Equivalently, this condition correspond a unique y in @(@,,(to)). 

may be expressed compactly by the implication 

10 { (UlY) E @,,(to> and (U,Y'> E a,,(to> 1 3 Y = Y' 
If the uniqueness condition is satisfied, then y can be expressed 

as a function of the input u and ao, with the latter identifying the 
bundle @,,(to) to which (u,y) belongs. We shall express this by writing 

11 y = d(a0;u) 

where A is n function from Zto X B(@,,(to)) to @(@,,(to)). Later on, 
this equation will be referred to as an input-output-state relation for a. 

12 Continuation Let (uo,yo) be an input-output pair in @,,(to) over an 
interval [to,ll], and let (u',y') be an input-output pair in @ ( t ~ )  over an 
interval [tl,t]. As in Sec. 2, the input-output pair (ul,y') will be 
said to be a continuation of (uo,yo) in @,(to) if the input-output pair 
(uoul,yoyl) is in @,,(to). In effect, (ul,yl) is merely a right truncate 
of an input-output pair in @,,(to). 

The continuation condition requires that the set of all continuations 
of (uo,yo) in @,,(to) be a bundle of input-output pairs in the family 
I @,,(to) 1 aolto* If the tag of this bundle is denoted by a1 (with a1 E &,), 
then the condition in question can be expressed as the equality 

13 { ( ~ l , Y ' ) I ( ~ o ~ ' , Y o Y ' )  E @,,(to> I = @,,(tl> 
which should hold for all to in R', all a. in 2,,, all (uo,yo) in @,o(to), and 
all tl  2 to, t 2 tl (see Fig. 1.5.1). 

To illustrate the four consistency conditions stated above, consider 
the time-invariant finite-state system defined in Example 1.2.9, and 
assume that for each to, to  = . . . , -1, 0, 1, . . . , the input-output 
pairs of length 1 5 3 are bundled together into three groups indexed 
by I, I1 and 111, that is, Zt, = { 1,11,111), independent of to. The mem- 
bers of the three bundles @I, aII ,  and aIII [with to  omitted as argument 
in @,(to), @ I I ( t o ) ,  and @ I I I ( t o )  because the bundles are the same for all to] 
are tabulated in Table 1.5.1. 

It is easy to verify by exhaustive testing that this bundling of 
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input-output pairs of length 1 3  satisfies the four consistency condi- 
tions. Specifically, for 1 .5 3 

1. The covering condition is satisfied because the union of aI, aII, 
and a111 is a. 

2. The closure under truncation condition is satisfied because the 
left truncates of every input-output pair in each bundle are in the same 
bundle. For example, the left truncates of (000,bab), which belongs to 
a1, are (0,b) and (OO,ba), both of which belong to aI. 

Fig. 1.6.1 Illustration of the continuation condition. 

Table 1.5.1 

I I1 111 

(0,b) 
(1,b) 

(OO,ba) 
(01,ba) 
(10,ba) 
( W b )  

(000,bab) 
(001,bab) 
(010,baa) 
(Ol1,bab) 
(100,bab) 
(101,bab) 
(110,bba) 
(ll1,bba) 

(000,aba) 
(001,aba) 
(Ol0,aba) 
(Ol1,abb) 
(100,aab) 
(101,aab) 
(110,aba) 
(ll1,aba) 

(000,aba) 
(001,aba) 
(010,aba) 
(Ol1,abb) 
(100,bab) 
(101,bab) 
( 1  10,baa) 
(111,bab) 
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3. The uniqueness condition is satisfied because, in each bundle, 
to every input sequence of length 53 corresponds a unique response. 
For example, for input-output pairs in a,, to the input (000) corresponds 
a unique response bab. Likewise, for input-output pairs in @,I, to the 
input (000) corresponds a unique response (aba). The same is true 
for all input-output pairs in each bundle. 

4. As an example of how the continuation condition is checked, 
consider an input-output pair such as (0,b) in a ~ .  By inspection, the 
continuations (of length 1 2 )  of this input-output pair in @I are found 
to be: 

which are members of ~ I I .  

the set of all continuations of (0,b) in aI coincides with QII. 

In  a similar fashion, we can verify that 

An additional illustration of the four consistency conditions is 

15 Example Let be a time-invariant system defined as a family, 
provided by the following 

{ a,,(to) 1, of bundles of input-output pairs 

inwhichaorangesover(-m,oo). Thus&, = (-m,m). 

In this case, the covering, uniqueness, and closure under truncation 
conditions are satisfied by the definition of a. To verify that the 
continuation condition is satisfied, let us pick an input-output pair in 
@, , ( to ) ,  say, (uo((t),yO((t)), to I t 5 tl,  and demonstrate that the set of 
all of its continuations in a,,(to) coincides with Q,,(tl) for some a1 in 

Then, 
( -m,m>.  

since (uOul,yOyl) E @,,(to), we must have 
Specifically, let (u l ,y l )  be a continuation of (uo,yO) in @,,(to). 
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Now, y l ( t )  as given by 18 can be rewritten successively as 

19 y l ( t )  = aoe-(t-t) 0 + h: e-+--E)uO(t) d t  + / t  t l  e-(t-E)ul(t) t 2 tl  

= aoe-(t-to) + e-(t-tl) J: e-(ti-t)uo(t) d t  + tl e-(t-t)u'(t) d t  

t 2 tl 

1: 20 - - ale-(t-tJ + e-(t-E)ul(t) d t  t 2 tl 

where 

(yl = aoe-(t-to) + e-(trt)uO(t) 
21 II:' 

From inspection of 20, it follows at once that the set of all continua- 
tions of (uo,yo) in aa,(to), that is, 

22 i (u ' ( t ) i~ ' ( t>>,  t 2 t l l ( ~ o ~ ' , ~ o ~ ' )  E aa,(td 1 
coincides with aorl(tl), and hence that the continuation condition is 
satisfied by the input-output pairs defined by 16. 

Aggregates and states 

Our main purpose in introducing the notion of a bundle of input-output 
pairs and in formulating a set of consistency conditions which families 
of such bundles must satisfy was to set the stage for defining the 
aggregates and states of a system in terms of its input-output pairs. 
We are now in a position to do this concisely and in a way which adds 
considerable insight to the meaning of the concept of state and its 
basic properties. 

23 Definition Let a system c% be defined as a collection of input-output 
pairs 

satisfying the CUS condition (see See. 2) .  Let ~ ~ a a ( t , , ) } a , , t a  be afamily 
of bundles of input-output pairs satisfying the covering 3, closure under 
truncation 6, uniqueness 7,  and continuation 12 conditions. Such a 
family will be said to be consistent, and a bundle @,,,(to) in a consistent 
family will be said to be an aggregate. 

26 Definition Let a,,(tO) be an aggregate in a at time to. The identifying 
tag (YO of @,,(to) is a state of The range of cro, Zt, is the state 
space of a at time to. When Zt, is independent of to-as is usually the 
c a s e i t  is denoted by 2 and is referred to more simply as the state space 
of a. 

When necessary to place in evidence the dependence of state on time, 
we shall denote it as x ( t )  or xt, according as t ranges over (- w ,  m) 

68 

24 a = i(U,Y)} 

at time to. 
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or the set of integers. Thus, it will be understood that, for each to, 
x( to)  is a variable ranging over Zt,, with a. representing a generic value 
of x(to). On occasion, a. or x(t0) will be referred to as t,he initial state 
of C% at  time to  in order to differentiate it from a state of C% at some subse- 
quent time t. 

26 Comment The definition of a state of a system as a tag for an 
aggregate in a underscores the fact that the states of a do not have a 
unique identity and have much less intrinsic connection with than 
the aggregates in a. This, however, naturally raises the question: 
Are the aggregates in a uniquely determined by the four consistency 
conditions 3, 5, 7,  and I d ?  It can be shown that this question can be 
answered affirmatively for certain classes of systems, e.g., systems whose 
input-output relations have the form of linear differential equations 
with constant coefficients (Theorem 3.9.1 in [l]). An example to the 
contrary is furnished by the two finite-state systems shown in Fig. 1.3.2. 
In  this case, a and @ have the same set of input-output pairs but not 
the same family of aggregates. I n  the terminology of finite-state sys- 
tems, @ is not strongly connected, that is, it contains states (state 3’) 
which are not reachable from other states (1’ and 2’). If the aggregates 
were required to be reachable from one another [in the sense that for 
each a. and each a1 there exists ~ [ ~ , , ~ , l  such that a,,(t,) is the set of 
all continuations of ( ~ ~ ~ , , ~ , ~ , y ~ ~ ~ , ~ , l )  in C%,,(to)], then the family of aggregates 
would be uniquely determined by the four consistency conditions. 

Input-output-state relations 

In consequence of the uniqueness condition, to each u in the domain 
of an aggregate a,,(to) corresponds a unique y in its range. Thus, 
for any input-output pair in @,,,(to) we can write 

or equivalently 
27 y = A(a0;u) 

28 y = A(x(t0);u)  

where A is a function from Z,, X ~(C%,,( to))  to  (R(a,,(to)). I n  view of 
their form, these relations will be referred to as the input-output-state 
relations for a. 

It should be noted that an input-output-state relation expresses an 
output segment y as a function of initial state 00 and an input segment 
u. Since there is no convenient way of expressing a segment of a time 
function as a function of other time functions, the information provided 
by an input-output-state relation will usually be presented in the form 
of an equabion 

29 Y ( t )  = A M t o )  ;u> 
29 
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in which y ( t ) ,  rather than y, is expressed as a function of x(t0) and u. 
Like 27 and 28, this equation will be referred to as an input-output- 
state relation. It is important to observe that when a is defined by 
an input-output relation having the form of a differential or difference 
equation, 29 expresses the general solution of such an equation, with 
x(to) representing the initial conditions. 

Having defined the states of a, we are now in a position to see more 
clearly the motivation for the less obvious consistency conditions 
imposed on the bundles of input-output pairs of a. Specifically, 
the uniqueness condition 7 serves to insure that if is initially (at to)  
in some state ao, then the response of a to any given input u in D(aa,(to)) 
is uniquely determined by that input and (YO through the input-output- 
state relation 27. This, of course, expresses a key property of the 
notion of a state of a system, viz., that the knowledge of state a t  time to 
is sufficient to determine the response of the system to any input 
starting at  time t o .  In  other words, the state of a system contains all 
the information about its past history that is relevant to the prediction 
of its future behavior. 

The continuation condition has the following interpretation. Sup- 
pose that a is initially (at to) in some state a. and that an input uo, 
8 0  e u[~,J,~ is applied to a. Then at time tl ,  a will be in a state a1 
which defines uniquely an aggregate a,,(t~). Thus, a1 can be regarded 
as the initial state (at time t l)  for any input starting at  t l .  We shall 
say that a. is taken by u0 into al. 

The above interpretation contains an important conclusion, namely, 
that @,,(tl) is uniquely determined by a0 and uo. This does not 
imply that a1 is uniquely determined by a. and uo since each bundle 
may be tagged in a number of different ways. However, as will be 
seen in Sec. 6, all such tags are equivalent to one another. Conse- 
quently, a1 is uniquely determined, to within equivalent states (see 
1.64 ,  by a. and uo. I n  a general form, this will be expressed by the 
equation 

so x(t> = F(x(to) ;u[t,*f,,) 

which will be referred to as a state equation for a. I n  this equation, 
F is a function from Z t ,  X ~(a, , ( t~>)  to Zt which expresses the state 
at time t in terms of the state a t  time t o  and the input segment over the 
interval [to$]. 

To illustrate the notions introduced in the foregoing discussion, it 
will be helpful to consider two examples which were employed previ- 
ously, namely, Example 1.2.9 and Example 1.6.15. 

In  Example 1.2.9, it is easy to verify by inspection of a ~ ,  ~ I I ,  and 
a111 that these aggregates comprise, respectively, input-output pairs 

so 
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starting in nodes I, 11, and 111. For example, the input-output pair 
(010,baa) in results from applying 0 starting in node I-which yields b 
and leads to node I1 ; then applying 1 starting in node 11-which yields a 
and leads to node 111; and then applying 0 starting in node 111-which 
yields a and leads to node I. I n  short, the input-output pair (010,baa) 
results from applying the input sequence 010 starting in node I-which 
yields the output sequence baa and leads to node I. 

Combining this observation with the fact that @I, &I, and a111 
have been verified to be aggregates of input-output pairs of a, it 
follows that the tags I, 11, and 111, which represent the nodes of the 
graph defining From the 
graph, it follows at once that if the state of a at  time t is denoted by 
xt, then we can write 

(Fig. 1.2.,2), constitute the states of a. 

31 21+1 = f(xt,u,> 
32 yt = g(Zt,Ut) 

t = . . . , -1, 0, 1, . . . 

where f and g are tabulated below 

33 XI 

0 1 I1 I I 
1 I11 I11 I1 

34 

Ut 

- 
0 
1 

I I1 I11 

b a  a 
b a  b 

By iteration, 31 can be used to yield an expression for xt, t 2 to, in 
Thus, terms of zt, and ut,, . . . , ~ ~ - 1 .  

35 Z t  = f(f(. * * ,f(f(~t,,~t,),~t,+l), - * - , ut-1)) 

which is a state equation for a in the sense of 30. 
this expression into 32, we have 

Then, on substituting 

36 Yt  = df(. . . ,f(f(Zt,,Ut,),Ut,+l), ,Ut-l),Ut) 

which is an input-output-state relation for a. Thus, in combination, 

si 
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37 

equations of the form 31 and 32 completely define a finite-state system 
and place in evidence its states and aggregates. 

It should be noted that, in the literature of finite-state systems, 
it is customary to  defme a time-invariant finite-state system as a 
triple of finite sets U (range of ut), Y (range of yt) ,  and Z (range of zJ, 
and the pair of functions f and g defined by 31 and 39. Thus, what 
is the point of departure in the conventional approach is a terminal 
point in the approach used in this chapter. 

Turning to Example 15, we note that in this case the input-output 
state relation 29 reads 

This equation is obtained from the definition of @,,,(to) (see IS) merely 
by replacing a. with x(to) in 17. 

From 21, it follows that the state equation 30 can be expressed in 
the explicit form 

z(t) = z(to)e-(t-fo) + e-(t-E)u(() d(  t 2 to  

Note that in the example under consideration y( t )  = z(t) for all t. 
More generally, the output a t  time t is a function of the input a t  time t 
and the state a t  time t, that is, 

38 1: 

39 Y ( 6  = ddt),u(O,t) 

This equation results from 29 by letting to = t in the input-output-state 
relation. Conversely, the input-output-state relation can be obtained 
from 39 by combining 39 with the state equation 30, that is, by sub- 
stituting the right-hand member of 30 in place of x( t )  in 39, yielding 

40 Y ( 0  = g(Wx( t0)  ; ~ ~ t , , t , ) r ~ ( ~ ) , t )  

which expresses y( t )  as a function of x( to)  and utt,,tl. 

State and system equivalence 

The preceding sections were devoted in the main to the introduction of 
three basic concepts: System, aggregate, and state. In  essence, we 
have defined a system as a collection of input-output pairs; we have 
defined an aggregate as a bundle of input-output pairs satisfying certain 
consistency conditions; and we have defined a state as a tag attached 
to an aggregate. 

As was pointed out earlier, since a state is merely a tag or a name 

3.2 
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for an aggregate, it is not as intrinsic a concept as that of an aggregate, 
in the sense that the same aggregate can be described by a variety of 
different tags whereas to each tag will correspond but one aggre- 
gate. These considerations motivate the following definition of state 
equivalence. 

1 Definition Let aol and ao2 denote two states in Zto. Then aol and 
ao2 will be said to be equivalent at to, written as aol ‘v ao2, if and only 
if they are tags for the same aggregate, that is, 

2 aaol(to> = a&o) 
The conventional definition of equivalent states (see Ref. 1, p. 71) 

is somewhat less general than the above definition; it corresponds to 
making the following simplifying assumptions concerning a. 

Let D(@,,,(to>) denote the domain of the relation amo(to), that is, 

3 ~ ( a a O ( t 0 ) )  A ( ~ I ( U , Y )  E aa0(td I 
If a is such that ~ ( a a o ( t o ) )  is independent of both a. and to,t then 

B(aao(to))  will be denoted more simply by U and will be called the 
input-junction space of a. Thus, 

%. A (ul(u,y) E aao( to ) }  4 independent of a. and to  
If a has an input-function space, then the definition of equivalent 

states d can be replaced by the simpler definition 

5 (a1 3 a2} ej (Vu[A(a’;u) = A(a”u)l} u E ‘u 

where A(a;u) and d(a2;u) denote, respectively, the responses of a 
to u starting in states a1 and a2. In  words, 5 means that a1 and aP 
are equivalent states of 8 if and only if for all inputs u in %. the response 
of to u starting in state a2 is identical with the response of a to u 
starting in state al. 

The same concept of equivalence applies when we speak of a state a 
of a system a as being equivalent to a state @ of a system a. In 
this case 

where B[@;u] denotes the response of 6?, to u starting in state @. 
Example 
respective input-output-state relations read 

6 ( a  !J} H {Vu[A(a;u) = B(@;u)J} 

7 Consider the two systems of Example 1.3.3, for which the 

a: 
a: Y( t )  = P o  + Pdt - to) + I t  t o  u(t)  at 

t Note that D(aa0(tJ) is independent of to if a is time-invariant. However, this 

9s 

is not a necessary condition. 
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In  this case, the state a = 0 of a is equivalent to the state @ = (0,O) 

Consider the finite-state systems a and (B shown in Fig. 1.3.1. 
On the other 

[@ A (P0,Pl)l of 63. 
8 Example 

Here it is obvious by inspection that 1 N 1' and 2 N 2'. 
hand, the state 3' of 63 has no' equivalent in a. 

9 Strong equivalence In  See. 3 two systems a and IR were defined to 
be equivalent, written as Q. = (B, if Q. = 63 in the set-theoretic sense, 
that is, if every input-output pair belonging to Q. also belongs to (B 

and vice versa. As was pointed out, if Q. = IR, then a and (B are 
indistinguishable by a simple experiment. 

There are many cases in which a. stronger concept of equivalence, 
namely one in which 6 and @ are indistinguishable by any multiple 
experiment, is more appropriate. A convenient way of expressing 
strong equivalence of Q. and (B is contained in the following definition. 

a and @ are strongly equivalent, written as a E a, if and 
only if, for each to, to every state Q! in the state space of a there is an 
equivalent state @ in the state space of (B and vice versa. In  symbols, 
if the responses of (3, and (B to  an input u starting in states Q! and @ 
at  time t o  are denoted by B(a;u) and B(@;u), respectively, then we can 
write compactly 

10 Definition 

11 a = IR @ VQ!3@Vut/to[A(Q!;u) = B(@;u)] 

V@3aVuVt,[A(a;u) = B(@;u)l 
and 

In  similar symbols, the expression for the definition of equivalence 
becomes 

12 a = IR @ VQ!VuVto3@[A(Q!;u) = B(@;u)J 

\d@VuVt,3a[B (.;u) = B(@;u)] 
and 

Note that the only difference between 11 and 1.2 stems from the differ- 
ence in the orders of quantifiers. Thus, in the case of equivalence, 
the state @ in 12 depends on a, u, and to, whereas in the case of strong 
equivalence, @ in 11 depends only on a. 

The notions of equivalence and strong equivalence are of central 
importance in system theory. A detailed discussion of the properties 
and consequences of these notions is presented in [l]. Here we shall 
restrict ourselves to a few comments centering on the role of the notion 
of state in system equivalence. 

First, we observe that the notion of equivalence is independent of 

34 
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the notion of state whereas that of strong equivalence is not. This 
implies that the equivalence of and 63 does not imply that a and 63 
are strongly equivalent, although the reverse is clearly true, that is, 
a Essentially, this means that the indistinguishability 
of a and 63 under a single experiment does not imply their indistinguish- 
ability under a multiple experiment. 

To illustrate, consider the finite-states system shown in Fig. 1.3.2. 
It is easy to verify by inspection that every input-output pair of a is 
also an input-output pair for 63, and vice versa. On the other hand, 
the state 3’ of 63 is clearly not equivalent to any state of a. Hence, 
a and 63 are not strongly equivalent. 

While it is not true in general that a = 63 * a E 63, there are 
types of systems for which equivalence implies strong equivalence. 
Among such systems [I] are strongly connected finite-state systems 
and differential systems of finite order. Note that the system 6i in 
Fig. 1.3.2 is not strongIy connected, since state 3’ in 63 is not reachable 
from other states. 

63 + a = 63. 

7 Association of states with a system 

In this section, we shall focus our attention on the following basic 
problem: Suppose that a system is defined as a set of input-output 
pairs, 

1 Q. = {(U,Y>l 

possibly, but not necessarily, through an input-output relation. If we 
can find a family of bundles { a,,(tO) } satisfying the conditions of 
covering, closure under left truncation, uniqueness, and continuation, 
then, as shown in See. 5, the tags ( a o }  of aggregates {a,,(to)} are the 
states of a and the relation 

is an input-output-state relation for a. The problem is: How can 
one find a family of bundles satisfying these conditions, Le., a family 
of aggregates of a? Since the states of a are the tags of its aggregates, 
we shall refer to this problem as the problem of associating states with a 
system. 

The association of states with a system Q. which is defined as a 
collection of input-output pairs results in a system with a state structure, 
or SSS ,  for short, which is characterized by the input-output-state 
relation 2 and which is equivalent to a in the sense of 1.3.8. It is 

36 
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important to note, however, that if a, is an SSS which corresponds to 
a particular aggregation of input-output pairs in a and if a, is another 
such SSS which corresponds to a different mode of aggregation of 
input-output pairs in a, then, in general, a, and will not be strongly 
equivalent in the sense of 1.6.10. Clearly, if all the SSS which are 
equivalent to a are strongly equivalent to one another, then there is 
one and only one family of bundles which qualify as aggregates of a. 

As an aid in finding a family of aggregates of a, it is very helpful to 
establish a basic property of input-output-state relations which, as will 
be seen below, is equivalent to the continuation condition. Specifically, 
from inspection of 1.2.13, it is obvious that, since the input-output pair 
(ul,yl) belongs to the bundle ~ a l ( t ~ ) ,  we can write 

5 Y V )  = Nal;u[;*.tl) 

4 a1 = F ( ~ O ; ~ ~ ~ , , t l l ~  

where a1 is independent of u1 and is dependent solely on a. and uo, 
that is, 

Furthermore, it is also clear that the continuation condition is satisfied 
if 5 and 4 hold true. 

This observation makes it possible to make the following assertion : 
Suppose that the bundling of input-output pairs of is defined by the 
input-output-state relation 

5 YO) = A(x(to) ;U[to,tl) 

6 a,,(to> { (u[to,tl,4x(tO) ;U[to,t1)) Ill 

7 Y[to.tl = &x(to) ;U[to,tl) 

through 

where a. = x(to) = initial state, u = u[~ , ,~I ,  and 

is an input-output-state relation (equivalent to 5) which expresses 
the output segment [rather than ~ ( t ) ]  as a function of the initial state 
x(t0) and the input segment U[~, ,~] .  Then the bundling in question satis- 
fies the continuation condition if and only if the input-output-state 
relation 5 satisfies the identity 

8 Y W  = Nx(t0) ;U[t,*tI) = A(x(t1) ;U[t,*tI) 
where x(t1) depends only on x(t0) and u[~, ,~ ,I ,  that is, 

9 X(tl> = F(x(t0) ;U[t,*t,I) 
This identity expresses the so-called response separation property of 5. 
Thus, the continuation condition implies and is implied by the response 
separation property. 

96 
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In  effect, the response separation property of the input-output-state 
relation affords a convenient way of checking on whether or not the 
continuation condition is satisfied by the family of bundles which is 
generated by the input-output-state relation in question. Using this 
property, the association of states with a given system involves only 
two steps: (a) Finding a relation of the form 2, with a.  ranging over 
a space Zt,, such that every input-output pair in Q. can be represented in 
this form and, converse'ly, for every t o  and every a. in 2,,, (u,A(x(to) ;u)) 
is an input-output pair in a;  and (b)  verifying that 2 has the 
response separation property. If ( a )  and (b)  are satisfied, then the a. 
qualify as the states of a at time t o  and the relation 

10 Y(t> = A(ao;u) 

may be regarded as an input-output-state relation for a. 
As was pointed out earlier (Sec. 5 ) ,  when Q. is defined by an input- 

output relation which has the form of a differential or difference 
equation, a relation of the form .2 constitutes an expression for the 
general solution of the equation. In  such cases, then, the association 
of states with a system involves merely a check on whether the general 
solution has 6he response separation property. 
Example As a simple illustration of the above procedure, suppose 
that Q. is defined by the input-output relation 

I1 

1.2 ( P  + 1)Y = u 
In this case, the general solution may be written as 

I S  y ( t )  = aoe-(t-t)  0 + J ;e+-E)u ( f )  d f  t 2. to 

which is of the form y( t )  = A(ao;u[t,,t~), with a0 ranging over the real 
line (- w , w ) .  

To verify that I3 has the response separation property, we have to 
verify that there exists a real number a1 independent of u [ ~ , , ~ I  such 
that, for all ao, to, tl ,  t ,  and u, we have the identity 

a,,e-(t-to) + e-(t-E)u(f) d f  = ale-(t--t,) + e - ( W ) u ( f )  d f  
14 1: /t f 
15 1:' 

Clearly, I 4  can be satisfied by relating 01 to a. and U [ ~ , , ~ , ]  by the equation 

(yl = a,,e-(h-b) + e-(tl-E)u(f) df 

This equation is a concrete form of 4 for the case under consideration. 
In  effect, it is a state equation for 8 induced by the input-output-state 
relation 13. 

It is of interest to observe that I S  would not have the response 
separation property if the exponents of the two terms in the right-hand 
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member of IS were not identical. 
as 

For example, if y ( t )  were given, say, 

y ( t )  = a@-2(f--'o) + e-(t-Ou([) d t  16 Jt: 
then 16 N-ould not have the response separation property. More 
generally, it is easy to verify that if the input-output-state relation 
is of the form 

17 

where the ai range over the real line, then the response separation 
property requires that the function h(t) be a linear combination of the 
exponentials 

State separation property 
In  the foregoing discussion, we assumed that the point of departure 
for associating states with a given system a is an input-output-state 
relation for a of the form 

i = 1, . . . , n. 

18 y(t> = A(x(to);urt,,*1) t 2 t 
where x( to) ,  the state a t  time to, is a variable ranging over a state space 
Zt,. 

If 18 has the response separation property, then we can write 

19 A W o )  ;u[to,t1) = A(x(t1) ;U[t,,tI) 

where x(tl) is related to x(to) and ~ [ t , , , ~ ]  by the state equation 

20 x(t1) = F(x(t0) ;U[to,t,I) 

As shown in [l], an important consequence of the response separation 
property is the so-called state separation property (or the semigroup 
property) of the state equation $0. When written in a form analogous 
to 19, this property may be expressed as the identity 

21 X ( t >  = F(x(t0) ;U[tn,tl) = F(x(t1) ;urt1,t1) 
where 

22 4 t l )  = Wx(t0)  ;u[to,t,I) 

with the understanding that d l  holds for all lo, tl ,  t (to 5 tl 5 t ) ,  
x(to) ,  and u[ t , , t l .  I n  words, the state separation property means: If an 
input segment U [ ~ , , ~ I  is divided arbitrarily into two segments ~ [ t , , ~ , ]  and 
u[~,,~],  and if an initial state x(to) is carried by U [ ~ , , ~ ]  into x ( t )  and by 
u [ ~ ~ , ~ , ]  into x( t l ) ,  then x(t1) is carried by u [ ~ ~ . ~ I  into x( t ) .  

In  most cases of practical interest, the dependence of y(t )  on ~ [ t , , ~ ]  
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in the input-output-state relation 18 is such that, as to + t ,  18 tends 
to a relation of the form 

2s do = g(x( t ) ,u( t ) , t )  

which implies that the output a t  time t depends only on the state 
at time t ,  the input a t  time t ,  and t .  Systems of this type will be 
said to be proper.  An example of a proper system (see Ref. 1, chap. 4) 
is a system defined by an input-output relation of the form 

24 (anpn + * - + ao)y = (bmpm+ * * + b o b  

in which n 2 m. 
A proper system may be characterized by the equation 

25 Y(t> = g ( x ( t > , u ( t ) , t )  

26 x( t>  = F(x(t0) ;U[to,tl) 

and the state equation 

27 

In  effect, these two equations define the system in question through 
the input-output-state relation 

Y ( 0  = g(F(x(t0)  ; ~ [ t * , t I , ~ ( t ) , t ) )  

which results from substituting 26 into 25. 

following form. 
An important property of proper systems may be expressed in the 

28 Assertion If the state equation 26 has the state separation property, 
then the input-output-state relation 27 will have the response separa- 
tion property and, consequently, the x ( t )  in 26 will qualify as the states 
of the system defined by 25 and 26. 

29 
SO 

The truth of this assertion follows at once from making use of 21 and 
22 in 27. 

The above assertion provides a very convenient way of associating 
states with a diferent ial  system, that is, a system whose input-output 
relation has the form of a differential equation. Thus, suppose that 
the given differential equation (or equations) defining Q. can be shown 
to be equivalent to the equations 

Y ( t )  = g(x( t> ,u( t ) , t )  
m = f (x( t ) ,u( t ) , t )  

in which x(t) ranges over a space Zt. 
asserted (corollary 2.3.36 in Ref. 1) : 

Then, the following can be 
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31 Assertion 
state x(to), then the solution, expressed as 

If equation 30 has a unique solution for x( t )  for every initial 
. 

will have the state separation property. Coupled with Assertion 28, 
this implies that if we can demonstrate that 29 and 30 are equivalent 
to  the differential equation (or equations) defining a (in the sense of 
having the same set of solutions), then we can conclude that the x(t) 
in 29 and SO qualify as the states of a. 

As a simple illustration, consider a system Q. defined by the input- 
output relation 

33 (anpn + 9 * . + ao)y = u 

in which the ai are real-valued coefficients and the input and output 
at time t are real-valued variables. On defining 

34 

the differential equation 31 can be replaced by the single vector differ- 
ential equation 

X ( t )  = Ax(t) + Bu(t) 35 

together with the equation 

36 v/(t> = Cdt)  

in which x = ( X I ,  . . . ,zn) and the matrices A, B, and C are given by 

37 A =  

- 0  
0 

. . . . . . . . . .  

1 0 . * *  

0 1 . * *  

B =  

C = [ 1  0 - * *  01 

Equation 35 has a unique solution which can be written as 

38 (t - tO)X( tO)  + h; 
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where @(t)  is the solution of the equation 

& = A@ @(O) = I identity matrix 

It follows from Assertion SO-and can also be readily verified 
directly-that 38 has the state separation property. Consequently, 
from 28 we can conclude that x ( t )  as defined by 34 qualifies as a state 
vector for a. 

In  more general cases, the association of states with a system can 
be carried out in a similar manner, with the response and state 
separation properties of the input-output-state relations and state 
equations serving as the bridge between the definition of a state as 
a tag for an aggregate and its expression in terms of the input and 
output of a. Detailed expositions of the techniques for associating 
states with a system may be found in some of the references listed below, 
especially [l] and [25]. I n  addition, a number of methods relevant to 
this problem in the context of linear differential systems will be dis- 
cussed in Chap. 5. 
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